- Answer all the following questions
- No. of questions: 4
- Illustrate your answers with sketches when necessary.
- The exam. Consists of one page
- Total Mark: 80 Marks

1- Solve the system $x+4 y+z=2,4 x+y+z=5, x+y+4 z=3$ using:
i) An iterative method
ii) Cholesky decomposition
iii) Gauss Jordan method

20 Marks
2- i) Find $y(1.1)$ using modified Euler method for the differential equation:

$$
x^{\prime}=x^{2}-2 t x+y-2 t, y^{`}=y-x^{2}-2 t x+2 t+3, x(1)=2, y(1)=3, h=0.1
$$

ii) $x^{`}=-10(x-y), \quad y^{`}=-x z+28 x-y, z^{`}=x y-8 z / 3, x(0)=2, y(0)=-1, z(0)=3, h=0.05$

Solve the above system using Picard method and find $x(0.1)$ using Euler method.
20 Marks
3-i) Consider the problem of determining the steady state heat distribution in a thin square metal plate with dimensions 0.5 m by 0.5 m . Two adjacent boundaries are held at $0^{\circ} \mathrm{c}$ and the heat of the other boundaries increases linearly from $0^{\circ} \mathrm{c}$ at one corner to $100^{\circ} \mathrm{c}$ where the sides meet. The problem is expressed as $\mathbf{u}_{\mathrm{xx}}+\mathbf{u}_{\mathbf{y y}}=\mathbf{1 0 x}$. If the grid is divided into 5 equal parts, find $u(x, y)$ such that $k=0.25$. Solve the constructed linear system of equations using Gauss elimination method.
ii) Find the constants of the curve $y=a \cos x+b \ln x+c e^{x / 10}$ that fit $(\mathbf{1 , 3}),(5,14),(19,101)$

20 Marks
4-i) Define with an example for each of the following terms:
Simple Graph - Valency - Walk - Trail - Path - Complete Graph - Null Graphs Bipartite Graphs - Tree Graph - Spanning Tree - Connected Graphs - Multi GraphsEulerian circuit - Eulerian path - Hamiltonian path -
ii) Find incidence and adjacency matrices for the following graphs

20 Marks

BOARD OF EXAMINERS: Dr. Eng. Khaled El Naggar

$$
\text { Modified Euler states: } \mathrm{y}_{\mathrm{i}+1}=\mathrm{y}_{\mathrm{i}}+(\mathrm{h} / 2)\left[\mathrm{f}\left(\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}\right)+\mathrm{f}\left(\mathrm{x}_{\mathrm{i}+1}, \mathrm{y}_{\mathrm{i}}+\mathrm{hf}\left(\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}\right)\right)\right]
$$

Model answer

1-i) Using Gauss-Seidel:
Rarrange: $4 \mathrm{x}+\mathrm{y}+\mathrm{z}=5, \mathrm{x}+4 \mathrm{y}+\mathrm{z}=2, \mathrm{x}+\mathrm{y}+4 \mathrm{z}=3$
$x^{(k+1)}=\left[5-y^{(k)}-z^{(k)}\right] / 4, y^{(k+1)}=\left[2-x^{(k+1)}-z^{(k)}\right] / 4, z^{(k+1)}=\left[3-x^{(k+1)}-y^{(k+1)}\right] / 4$
Let $(\mathrm{x}, \mathrm{y}, \mathrm{z})^{(0)}=(0,0,0)$, therefore the $1^{\text {st }}$ iteration will be: $\mathrm{x}^{(1)}=\left[5-\mathrm{y}^{(0)}-\mathrm{z}^{(0)}\right] / 4=1.25$, $y^{(1)}=\left[2-x^{(1)}-z^{(0)}\right] / 4=0.1875, z^{(1)}=\left[3-x^{(1)}-y^{(1)}\right] / 4=0.3906$ and the $2^{\text {nd }}$ iteration will be $x^{(2)}=\left[5-y^{(1)}-\mathrm{z}^{(1)}\right] / 4=1.1055, \mathrm{y}^{(2)}=\left[2-\mathrm{x}^{(2)}-\mathrm{z}^{(1)}\right] / 4=0.126, \mathrm{z}^{(2)}=\left[3-\mathrm{x}^{(2)}-\mathrm{y}^{(2)}\right] / 4=0.4421$ 1-ii)Using Cholesky method

$$
\left(\begin{array}{ccc}
2 & 0 & 0 \\
0.5 & 1.9365 & 0 \\
0.5 & 0.3873 & 1.8974
\end{array}\right)\left(\begin{array}{ccc}
2 & 0.5 & 0.5 \\
0 & 1.9365 & 0.3873 \\
0 & 0 & 1.8974
\end{array}\right)=\left(\begin{array}{lll}
4 & 1 & 1 \\
1 & 4 & 1 \\
1 & 1 & 4
\end{array}\right)
$$

$$
\left(\begin{array}{ccc}
2 & 0 & 0 \\
0.5 & 1.9365 & 0 \\
0.5 & 0.3873 & 1.8974
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
5 \\
2 \\
3
\end{array}\right) \text {, therefore }\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{c}
2.5 \\
0.3873 \\
0.8433
\end{array}\right)
$$

Also $\left(\begin{array}{ccc}2 & 0.5 & 0.5 \\ 0 & 1.9365 & 0.3873 \\ 0 & 0 & 1.8974\end{array}\right)\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{c}2.5 \\ 0.3873 \\ 0.8433\end{array}\right)$, therefore $\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{c}1.1111 \\ 0.1111 \\ 0.4445\end{array}\right)$
1-iii) Using Gauss Jordan method:
$\left(\begin{array}{ccc:c}4 & 1 & 1 & \vdots \\ 1 & 4 & 1 & \vdots \\ 1 & 1 & 4 & \vdots \\ \hline\end{array}\right) \approx\left(\begin{array}{ccc:c}4 & 1 & 1 & \vdots \\ 0 & -15 & -3 & \vdots \\ 0 & -3 \\ 0 & -3 & -15 & \vdots\end{array}\right) \approx\left(\begin{array}{ccc:c}60 & 0 & 12 & \vdots \\ \hline\end{array}\right) ~ 72 ~\left(\begin{array}{ccc:c} \\ 0 & -15 & -3 & \vdots \\ 0 & 0 & 72 & \vdots \\ 0 & 32\end{array}\right) \approx\left(\begin{array}{cccc}360 & 0 & 0 & \vdots \\ 0 & -360 & 0 & -40 \\ 0 & 0 & 72 & \vdots\end{array}\right)$
Therefore $\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{c}10 / 9 \\ 1 / 9 \\ 4 / 9\end{array}\right)$
$2-i) \mathbf{x}^{\prime}=\mathbf{x}^{2}-\mathbf{2 t} \mathbf{x}+\mathbf{y}-\mathbf{2 t}=\mathbf{f}(\mathbf{x}, \mathbf{y}, \mathbf{t}), \mathbf{y}^{`}=\mathbf{y}-\mathbf{x}^{\mathbf{2}}-\mathbf{2 t x}+\mathbf{2 t}+\mathbf{3}=\varphi(\mathbf{x}, \mathbf{y}, \mathbf{t}), \mathrm{x}_{0}=2, \mathrm{y}_{0}=3, \mathrm{t}_{0}=1$ $\mathrm{y}_{\mathrm{i}+1}=\mathrm{y}_{\mathrm{i}}+(\mathrm{h} / 2)\left[\varphi\left(\mathrm{t}_{\mathrm{i}}, \mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}\right)+\varphi\left(\mathrm{t}_{\mathrm{i}+1}, \mathrm{x}_{\mathrm{i}}+\mathrm{hf}\left(\mathrm{t}_{\mathrm{i}}, \mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}\right), \mathrm{y}_{\mathrm{i}}+\mathrm{h} \varphi\left(\mathrm{t}_{\mathrm{i}}, \mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}\right)\right)\right]$

Put $\mathrm{i}=0$, therefore
$\mathrm{y}_{1}=\mathrm{y}_{0}+(\mathrm{h} / 2)\left[\varphi\left(\mathrm{t}_{0}, \mathrm{x}_{0}, \mathrm{y}_{0}\right)+\varphi\left(\mathrm{t}_{1}, \mathrm{x}_{0}+\mathrm{hf}\left(\mathrm{t}_{0}, \mathrm{x}_{0}, \mathrm{y}_{0}\right), \mathrm{y}_{0}+\mathrm{h} \varphi\left(\mathrm{t}_{0}, \mathrm{x}_{0}, \mathrm{y}_{0}\right)\right)\right]=2.9585$
2-ii) $\quad y_{n+1}=y_{0}+\int_{t_{0}}^{t}\left(x_{n} z_{n}+28 x_{n}-y_{n}\right) d t, \quad x_{n+1}=x_{0}+\int_{t_{0}}^{t}-10\left(x_{n}-y_{n}\right) d t$
$\mathrm{z}_{\mathrm{n}+1}=\mathrm{z}_{0}+\int_{\mathrm{t}_{0}}^{\mathrm{t}}\left(\mathrm{x}_{\mathrm{n}} \mathrm{y}_{\mathrm{n}}-8 \mathrm{z}_{\mathrm{n}} / 3\right) \mathrm{dt}, \mathrm{y}_{0}=-1, \mathrm{x}_{0}=2, \mathrm{t}_{0}=0, \mathrm{z}_{0}=3$, thus $\mathrm{x}_{1}=\mathrm{x}_{0}+\int_{\mathrm{t}_{0}}^{\mathrm{t}}-10\left(\mathrm{x}_{0}-\mathrm{y}_{0}\right) \mathrm{dt}$,
$y_{1}=y_{0}+\int_{t_{0}}^{t}\left(x_{0} z_{0}+28 x_{0}-y_{0}\right)$ dt and $z_{1}=z_{0}+\int_{t_{0}}^{t}\left(x_{0} y_{0}-8 z_{0} / 3\right) d t$, therefore $x_{1}=2-30 t$, $y_{1}=-1+51 t, z_{1}=3-10 t$. Similarly, $x_{2}=x_{0}+\int_{t_{0}}^{t}-10\left(x_{1}-y_{1}\right) d t, \quad y_{2}=y_{0}+\int_{t_{0}}^{t}\left(x_{1} z_{1}+28 x_{1}-y_{1}\right) d t$ and $z_{2}=z_{0}+\int_{t_{0}}^{t}\left(x_{1} y_{1}-8 z_{1} / 3\right) d t$, therefore $x_{2}=2-30 t+405 t^{2}, y_{2}=-1+51 t-(781 / 2) t^{2}-100 t^{3}$, $\mathrm{Z}_{2}=3-10 \mathrm{t}+(238 / 3) \mathrm{t}^{2}-510 \mathrm{t}^{3}$.
$2^{\text {nd }}: \underline{\text { using Euler, }}, x_{n+1}=x_{n}+h\left[-10\left(x_{n}-y_{n}\right)\right], y_{n+1}=y_{n}+h\left[-x_{n} z_{n}+28 x_{n}-y_{n}\right]$, thus $\mathrm{x}_{1}=\mathrm{x}_{0}+\mathrm{h}\left[-10\left(\mathrm{x}_{0}-\mathrm{y}_{0}\right)\right]=0.5=\mathrm{x}(0.05), \mathrm{y}_{1}=\mathrm{y}_{0}+\mathrm{h}\left[-\mathrm{x}_{0} \mathrm{z}_{0}+28 \mathrm{x}_{0}-\mathrm{y}_{0}\right]=1.55=\mathrm{y}(0.05)$, therefore $\mathrm{x}(0.1)=\mathrm{x}_{2}=\mathrm{x}_{1}+\mathrm{h}\left[-10\left(\mathrm{x}_{1}-\mathrm{y}_{1}\right)\right]=1.025$

$$
\mathrm{U}(\mathrm{x}, 0.5)=200 \mathrm{x}
$$

$u_{0}=u_{1}=u_{2}=u_{3}=u_{4}=u_{5}=u_{11}=u_{12}=0, u_{6}=50, u_{17}=100, u_{16}=80, u_{15}=60, u_{14}=40, u_{13}=20$
The formula of Poisson equation is simplified to:

$$
0.0625\left[U_{i+1, j}+U_{i-1, j}\right]+0.01\left[U_{i, j+1}+U_{i, j-1}\right]-0.00625 x_{i}=0.145 U_{i, j}
$$

From which the following system of equations are constructed:
$0.0625 \mathrm{U}_{8}-0.145 \mathrm{U}_{7}=-3.9225,0.0625\left[\mathrm{U}_{7}+\mathrm{U}_{9}\right]-0.145 \mathrm{U}_{8}=-0.59813$,
$0.0625\left[\mathrm{U}_{8}+\mathrm{U}_{10}\right]-0.145 \mathrm{U}_{9}=-0.39875,0.0625 \mathrm{U}_{9}-0.145 \mathrm{U}_{10}=-0.1994$,

3-ii) To get constants $\mathrm{a}, \mathrm{b}, \mathrm{c}$, we have to use Least square method Such that
$\sum_{\mathrm{i}=1}^{3} \mathrm{y}_{\mathrm{i}} \cos \left(\mathrm{x}_{\mathrm{i}}\right)=\mathrm{a} \sum_{\mathrm{i}=1}^{3}\left[\cos \left(\mathrm{x}_{\mathrm{i}}\right)\right]^{2}+\mathrm{b} \sum_{\mathrm{i}=1}^{3}\left[\cos \left(\mathrm{x}_{\mathrm{i}}\right)\right]\left[\ln \left(\mathrm{x}_{\mathrm{i}}\right)\right]+\mathrm{c} \sum_{\mathrm{i}=1}^{3}\left[\cos \left(\mathrm{x}_{\mathrm{i}}\right)\right]\left[\mathrm{e}^{-\mathrm{x}_{\mathrm{i}} / 10}\right]$
$\sum_{\mathrm{i}=1}^{3} \mathrm{y}_{\mathrm{i}}\left[\ln \left(\mathrm{x}_{\mathrm{i}}\right)\right]=\mathrm{a} \sum_{\mathrm{i}=1}^{3}\left[\cos \left(\mathrm{x}_{\mathrm{i}}\right)\right]\left[\ln \left(\mathrm{x}_{\mathrm{i}}\right)\right]+\mathrm{b} \sum_{\mathrm{i}=1}^{3}\left[\ln \left(\mathrm{x}_{\mathrm{i}}\right)\right]^{2}+\mathrm{c} \sum_{\mathrm{i}=1}^{3}\left[\ln \left(\mathrm{x}_{\mathrm{i}}\right)\right]\left[\mathrm{e}^{-\mathrm{x}_{\mathrm{i}} / 10}\right]$
$\sum_{i=1}^{3} y_{i}\left[\mathrm{e}^{-\mathrm{x}_{\mathrm{i}} / 10}\right]=\mathrm{a} \sum_{\mathrm{i}=1}^{3}\left[\cos \left(\mathrm{x}_{\mathrm{i}}\right)\right]\left[\mathrm{e}^{-\mathrm{x}_{\mathrm{i}} / 10}\right]+\mathrm{b} \sum_{\mathrm{i}=1}^{3}\left[\ln \left(\mathrm{x}_{\mathrm{i}}\right)\right]\left[\mathrm{e}^{-\mathrm{x}_{\mathrm{i}} / 10}\right]+\mathrm{c} \sum_{\mathrm{i}=1}^{3}\left[\mathrm{e}^{-\mathrm{x}_{\mathrm{i}} / 5}\right]$
$\left.\sum_{\mathrm{i}=1}^{3}\left[\cos \left(\mathrm{x}_{\mathrm{i}}\right)\right]^{2}=1.3499, \sum_{\mathrm{i}=1}^{3}\left[\cos \left(\mathrm{x}_{\mathrm{i}}\right)\right]\left[\ln \left(\mathrm{x}_{\mathrm{i}}\right)\right]=3.3677, \sum_{\mathrm{i}=1}^{3}\left[\cos \left(\mathrm{x}_{\mathrm{i}}\right)\right] \mathrm{e}^{-\mathrm{x}_{\mathrm{i}} 110}\right]=7.6751$
$\sum_{i=1}^{3}\left[\ln \left(x_{i}\right)\right]^{2}=11.2597, \sum_{i=1}^{3}\left[\ln \left(x_{i}\right)\right]\left[\mathrm{e}^{-\mathrm{x}_{\mathrm{i}} / 10}\right]=22.3394$ and $\sum_{\mathrm{i}=1}^{3}\left[\mathrm{e}^{-\mathrm{x}_{\mathrm{i}} / 5}\right]=48.641$, from which
we can get $\mathrm{a}, \mathrm{b}, \mathrm{c}$
4-i) Simple Graph: A graph with no loops or multiple edges is called a simple graph Valency:Is the degree of vertices
Walk: Pass through vertices and edges of the graph and may pass through repeated vertices and edges
Trail: If all the edges (but no necessarily all the vertices) of a walk are different, then the walk is called a trail (i.e. walk with no repeated edges)
Path: All edges and vertices of walk are different, then the trail is called path(i.e. trail with no repeated vertices).
Complete Graphs: Is a graph in which every two distinct vertices are joined by exactly one edge
Null Graphs: graph containing no edges
Bipartite Graphs: Is a graph whose vertex-set can be split into two sets in such a way that each edge of the graph joins a vertex in first set to a vertex in second set.
Tree Graph: A tree is a connected graph which has no cycles.
Spanning Tree: If G is a connected graph, the spanning tree in G is a sub graph of G which includes every vertex of G and is also a tree.

Connected Graphs: A graph G is connected if there is a path in G between any given pair of vertices, otherwise it is disconnected

Multi Graphs: A multigraph or pseudograph is a graph which is permitted to have multiple edges
Eulerian circuit: Is a Eulerian trail which starts and ends on the same vertex
Eulerian path: Is a trail in a graph which visits every edge exactly once.
Hamiltonian path: Is a path in a graph G that passes through every vertex exactly once.

Incidence matrices:

$\left(\begin{array}{lllllll}1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0\end{array}\right),\left(\begin{array}{cccccc}-1 & -1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & -1 & 0 & 1 \\ 0 & 0 & 1 & 0 & -1 & -1 \\ 0 & 1 & -1 & 1 & 0 & 0\end{array}\right),\left(\begin{array}{ccccccc}1 & 0 & 0 & -1 & 0 & 0 & 1 \\ -1 & -1 & 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & -1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & -1 & 0 & -1 \\ 0 & 0 & 0 & 0 & 1 & 1 & 0\end{array}\right)$

Adjacency matrices:

$$
\left(\begin{array}{llllllll}
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right),\left(\begin{array}{llll}
0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 \\
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right),\left(\begin{array}{lllll}
0 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

